PYTHON WITH MACHINE LEARNING ONLINE TRAINIG COURSE

INTRODUCTION & CONCEPT DETAILS

Introduction to Data Science

  • What is Data Science?
  • What does Data Science involve?
  • Era of Data Science
  • Business Intelligence vs Data Science
  • Life cycle of Data Science
  • Tools of Data Science
  • Introduction to Python

Data Extraction, Wrangling, & Visualization

  • Data Analysis Pipeline
  • What is Data Extraction
  • Types of Data
  • Raw and Processed Data
  • Data Wrangling
  • Exploratory Data Analysis
  • Visualization of Data

Introduction to Machine Learning with Python

  • Data Analysis Pipeline
  • What is Data Extraction
  • Types of Data
  • Raw and Processed Data
  • Data Wrangling
  • Exploratory Data Analysis
  • Visualization of Data

Supervised Learning – I

  • What is Classification and its use cases?
  • What is Decision Tree?
  • Algorithm for Decision Tree Induction
  • Creating a Perfect Decision Tree
  • Confusion Matrix
  • What is Random Forest?

Dimensionality Reduction

  • Introduction to Dimensionality
  • Why Dimensionality Reduction
  • PCA
  • Factor Analysis
  • Scaling dimensional model
  • LDA

Supervised Learning – II

  • What is Naïve Bayes?
  • How Naïve Bayes works?
  • Implementing Naïve Bayes Classifier
  • What is Support Vector Machine?
  • Illustrate how Support Vector Machine works?
  • Hyperparameter optimization
  • Grid Search vs Random Search
  • Implementation of Support Vector Machine for Classification

Unsupervised Learning

  • What is Clustering & its Use Cases?
  • What is K-means Clustering?
  • How K-means algorithm works?
  • How to do optimal clustering
  • What is C-means Clustering?
  • What is Hierarchical Clustering?
  • How Hierarchical Clustering works?

Association Rules Mining and Recommendation Systems

  • What are Association Rules?
  • Association Rule Parameters
  • Calculating Association Rule Parameters
  • Recommendation Engines
  • How Recommendation Engines work?
  • Collaborative Filtering
  • Content Based Filtering

Reinforcement Learning

  • What is Reinforcement Learning
  • Why Reinforcement Learning
  • Elements of Reinforcement Learning
  • Exploration vs Exploitation dilemma
  • Epsilon Greedy Algorithm
  • Markov Decision Process (MDP)
  • Q values and V values
  • Q – Learning
  • α values

Time Series Analysis

  • What is Time Series Analysis?
  • Importance of TSA
  • Components of TSA
  • White Noise
  • AR model
  • MA model
  • ARMA model
  • ARIMA model
  • Stationarity
  • ACF & PACF

Model Selection and Boosting

  • What is Model Selection?
  • Need of Model Selection
  • Cross – Validation
  • What is Boosting?
  • How Boosting Algorithms work?
  • Types of Boosting Algorithms
  • Adaptive Boosting

CONTACT US